1. Название этого элемента связано с озорным духом, который любил подшучивать над горняками. Его применяют: при создании суперсплавов, в медицине и даже при изготовлении монет. Поэтому в США в разговорной речи монету в 5 центов нередко называют этим металлом. Оксид этого элемента, содержащий 21,33 % кислорода по массе используют как зелёный пигмент для стекла, глазурей и керамики. А оксид, который содержит 28,92 % кислорода, используют для создания анодов щелочных аккумуляторов. Определите элемент и формулы его оксидов. Ответ подтвердите расчетами.

(10 баллов)

Решение.

1. Воспользуемся законом эквивалентов:

$${\stackrel{_{_{+Z(A)}-Z(B)}}{A_x}}B_y$$

$$\frac{z(B)}{z(A)} = \frac{x}{y} \tag{1}$$

$$\frac{\omega(A)}{\omega(B)} = \frac{Mr(1/z(A)A)}{Mr(1/z(B)B)}$$
 (2)

где: $\omega(A)$ и $\omega(B)$ - массовые доли элементов в соединении, %

Mr(1/z(A)A) и Mr(1/z(B)B) - молярные массы эквивалентов, которые выражаются как:

$$Mr(A) = z(A) *Mr(1/z(A)A)$$
(3)

Mr(A) - молярная масса, г/моль.

z(A) - эквивалентное число.

(2 балла)

2. Вычислим эквивалент кислорода в оксидах, учитывая, что степень окисления кислорода равна -2:

$$Mr(1/2 O)=8$$
 г/моль.

(1 балл)

Далее находим содержание искомого элемента в оксидах, %.

Таблица 1

Номер оксида	Содержание кислорода, %	Содержание элемента,
		%
1	21,33	78,67
2	28,92	71,08
	·	·

(1 балл)

3. Далее найдем по уравнению (2), которое перепишется в виде $Mr(1/z(A)) = \frac{\omega(A)}{\omega(O)} *Mr(1/2O)$, молярную массу эквивалента искомого компонента, результаты расчета представлены в таблице ниже: Таблица 2

Номер оксида	Mr(1/z(A)A)	
1	29,5	
2	19,7	

(1 балл)

4. Предположим, что элемент во всех оксидах имеет целочисленную степень окисления и соответственно эквивалентное число. Тогда методом перебора, воспользовавшись уравнением (3) найдем молярную массу искомого компонента.

Таблица 3

TT		1		2
Номер	1		2	
оксида		1		
		Элемент		Элемент
z(A)	Mr(A)	соответствующий	Mr(A)	соответствующий
		Mr(A)		Mr(A)
1	29,5		19,7	
2	59	Ni	39,3	≈Аг или К
3	88,5	Y	59	Ni
4	118		78,7	Se
5	147,5	Pm	98,3	
6	177		118	Sn

(2 балла)

5. Только никель повторяется в двух столбцах, и удовлетворяет описанию элемента в условиях задачи. Искомый элемент - никель.

(1 балл)

6. Найдем формулу оксидов никеля используя уравнение (1) и результаты расчетов таблицы 3, при том что z(B)=2, всегда, так как кислород:

Оксид №1 с содержанием кислорода 21,33 % имеет z(A)=2, тогда $\frac{y}{z} = \frac{z(A)}{z(B)} = \frac{z(Ni)}{z(O)} = \frac{2}{2} = \frac{1}{I}$, соответственно оксид имеет формулу *NiO*.

Оксид №2 с содержанием кислорода 28,92% имеет z(A)=3, тогда $\frac{y}{z} = \frac{z(A)}{z(B)} = \frac{z(Ni)}{z(O)} = \frac{3}{2}$, соответственно оксид имеет формулу Ni_3O_2 .

(2 балла) (Итого 10 баллов)

2. Смесь средних солей массой 61,9 г растворили в воде. Сюда же по каплям добавляли раствор нитрата серебра до прекращения выпадения осадка, масса которого после фильтрования и сушки составила 52,2 г. К оставшемуся фильтрату добавили сульфат натрия в избытке, при этом выпал осадок, не имеющий в своём составе ионов серебра, массой 46,6 г.

Задания:

- 1) Необходимо определить массовые доли солей в исходной смеси, если известно, что в ее состав входили Ba(NO₃)₂, BaCl₂, NaI.
- 2) Приведите химические уравнения протекающих процессов
- 3) Напишите качественные реакции для определения Ba^{2+} , Na^+ , I^- , Cl^- , с указанием качественного признака.

Рассчитайте суммарную массу образовавшихся нитратов (!) в процессе всех превращений. (Итого 15 баллов)

Решение и разбалловка

	Решение	Баллы
1	Пусть x , y , z — количество моль $Ba(NO_3)_2$, $BaCl_2$ и NaJ в смеси, соответственно. Тогда массы солей можно рассчитать, как произведение количества моль соли на ее	5
	молярную массу: $261x \ \Gamma \text{масса Ba(NO}_3)_2, \ 208y \ \Gamma \text{масса BaCl}_2, \ 150z \ \Gamma. \\ - \text{масса NaJ, следовательно}$	
	261x + 208y + 150z = 61.9.	
	При добавлении нитрата серебра выпадают осадки AgCl и AgJ, причем количество AgCl равно 2у моль, а AgJ –	

	z моль, массы этих солей составляют	
	2y *143.5 и $z*235$, значит	
	287y + 235z = 52.2.	
	При добавлении сульфата натрия выпадает осадок $BaSO_4$, причем его количество равно $(x+y)$ моль, а масса – $(x+y)233$, поэтому	
	233 (x + y) = 46.6.	
	Решая систему из трех полученных уравнений, находим, что $x=0.1$ моль, $y=0.1$ моль, $z=0.1$ моль. Массы солей в смеси составляют 26.1 г, 20.8 и 15.0, а массовые доли:	
	$w(Ba(NO_3)_2) = 26.1/61.9*100\% = 42,2,$	
	$w(BaCl_2) = 20.8/61.9*100\% = 33,6,$	
	w(NaJ) = 100 - 42,2 - 33,6 = 24,2.	
2	A) $BaCl_2 + 2AgNO_3 = Ba(NO_3)_2 + 2AgCl$	4
	$F) NaI + AgNO_3 = NaNO_3 + AgI$	
	B) $Ba(NO_3)_2 + Na_2SO_4 = BaSO_4 + 2NaNO_3$	
	Γ) BaCl ₂ + Na ₂ SO ₄ = BaSO ₄ + 2NaCl	
3	Ba^{2+} : $Ba(NO_3)_2 + H_2SO_4 = BaSO_4 + 2HNO_3$ (белый осадок)	4
	Na ⁺ : ионы натрия окрашивают пламя в желтый цвет	
	I-: взаимодействие с крахмалом (синее окрашивание)	
	Cl^- : $HCl + AgNO_3 = HNO_3 + AgCl$ (белый осадок)	
4	A) $m_1(NaNO_3) = \nu(NaI) * M(NaNO_3) = 0,1$ моль * 85 г\моль = = 8,5 г	2
	$m_2(NaNO_3) = 2\nu(Ba(NO_3)_2) * M(NaNO_3) = 0,2$ моль * 85 $\Gamma \setminus MOЛЬ = 17$ Γ	
	B) $m_{\Sigma}(NaNO_3) = m1 + m2 = 25,5 \Gamma$	

Задача 3

Простое вещество X сгорает в атмосфере бесцветного газа Y с образованием простого газообразного вещества Z и сложного газообразного вещества W, входящих в состав атмосферного воздуха. При взаимодействии вещества W с оксидом кальция образуется осадок белого цвета массой 5 г, а вещество Z при обычных условиях взаимодействует с литием. Определите вещества X, Y, Z, W и составьте уравнения реакций. Рассчитайте массу вещества W (10 баллов).

Решение.

1. Поскольку в условиях задачи сказано, что вещества Z и W являются газообразными и входят в состав атмосферного воздуха, при этом одно из них простое, а другое сложное, то предположительно вещество Z – азот N_2 , W – углекислый газ CO_2 . Следовательно, простое вещество X – углерод C, а бесцветный газ Y – оксид азота (I) NO (2 балла).

$$C + 2NO \rightarrow N_2 + CO_2$$
 (2 балла)

2. При взаимодействии вещества W – углекислого газа CO₂ с оксидом кальция образуется осадок белого цвета – карбонат кальция CaCO₃:

$$CO_2 + CaO \rightarrow CaCO_3$$
 (2 балла)

3. Вещество Z – азот N_2 при обычных условиях взаимодействует только с литием:

$$N_2 + 6Li \rightarrow 2Li_3N$$
 (2 балла)

4. Найдем массу вещества W – CO₂:

1.
$$\nu$$
 (CaCO₃) = $\frac{m \text{ (CaCO 3)}}{M \text{ (CaCO 3)}} = \frac{5 \text{ } \epsilon}{100 \text{ } \epsilon / \text{моль}} = 0,05 \text{ моль}$
 ν (CaCO₃) = ν (CO₂) = 0,05 моль **(1 балл)**

2. m (CO₂) =
$$\nu$$
 (CO₂) × m (CO₂) = 0,05 моль × 44 г/моль = 2,2 г (1 балл) Ответ: X – C; Y – NO; Z – N₂; W – CO₂. Масса вещества W (CO₂) = 2,2 г.

Задача 4.

При сжигании вещества **A** в кислороде образовался газ **B** – вещество с резким кислым запахом. Про **A** известно, что в природе оно может встречаться в самородном виде или в составе соединений, главным образом, солей. Рекордные запасы этого вещества находятся в Средней Азии, Польше, Мексике, на юге Италии. В природе это вещество образовалось в ходе вулканической деятельности или в результате деятельности соответствующих бактерий.

Интересно, что в составе вещества \mathbf{X} основной компонент вещества \mathbf{A} проявляет лечебные свойства — воды, содержащие \mathbf{X} , применяют в санаторно-курортном лечении. Получить вещество \mathbf{X} можно следующим образом: вначале надо взять 5 г серого порошка \mathbf{C} и 9 г желтого порошка \mathbf{A} , при этом если считать, что серый порошок полностью вошел в состав нового вещества \mathbf{D} , то его масса составит 13,89 г. Далее вещество \mathbf{D} необходимо обработать водой, при этом начнет выделяться вещество \mathbf{C} неприятным тухлым запахом —это и будет вещество \mathbf{X} .

- 1. Назовите вещества А, В, С, D, Х. Напишите уравнения
- 2. Напишите уравнение образования вещества \mathbf{D} , свой ответ подтвердите расчетами.
- 3. Напишите уравнение реакции вещества **D** с водой получение вещества X. Приведите еще один известный лабораторный метод получения этого вещества

Еще одним интересным свойством вещества **A** является способность реагировать с сульфитами, при этом образуется соединение **Y**, применяемое в йодометрии (реакция 1,2). Также **A** нашло применение в черно-белой фотографии, поскольку растворяет бромид серебра (реакция 3). Известно, что что оно даже получило собственное название «антихлор», поскольку применяется для нейтрализации хлора (реакция 4).

4. Назовите вещество **Y**, приведите его графическую структуру. Напишите уравнения реакций 1,2,3 и 4.

(15 баллов).

Решение.

- 1. А -сера, В диоксид серы, С оксид алюминия, D сульфид алюминия, X сероводород
- 2. Элемент А сера, при горении которой образуется сернистый газ или диоксид серы, обладающий резким кислым запахом:

$$S + O2 = SO2$$

Так как серый порошок полностью (5 г) вошел в состав вещества D, то серы в его составе оказалось 13,89-5=8,89 г. Тогда массовая доля серы в нем $\omega(S)=8,89/13,89=0,64$, а молярная масса D $M_D=32n/0,64=50n$, где n- число молей атомов серы в одном моле D.

При n=1 $M_D=50 => M_{\text{остатка}}=50-32=18$, что могло бы соответствовать двум атомам Be, но вещества Be_2S не бывает

При n=2 $M_D=100$ => Мостатка = 100-2*32=36, что могло бы соответствовать трем атомам C, но трудно ожидать, чтобы сера реагировала с углеродом со вспышкой, да и вещество C3S2 не является твердым, а представляет из себя красную летучую жидкость

При n = 3 $M_D = 150 => Мостатка = 150-3*32 = 54, что соответствует двум атомам Al. Такой состав хорошо согласуется с привычными степенями окисления для этих элементов. Порошок алюминия действительно имеет серый цвет, а его смесь с серой вспыхивает от пламени и приводит к образованию твердого сульфида алюминия (вещество D):$

$$2A1 + 3S = A12S3 (t, {}^{\circ}\mathbb{C}$$

Уравнение реакции сульфида алюминия с водой (образование X):

$$A12S3 + 6H2O = 3H2S\uparrow + 2Al(OH)3\downarrow$$

3. Сероводород в лаборатории обычно получают взаимодействием сульфида железа с соляной кислотой: FeS + 2HCl = FeCl2 + H2S↑ но подойдут и некоторые другие сульфиды (с не очень низкой растворимостью) и другие не окисляющие кислоты. Другой весьма удобный способ его получения — нагревание расплава смеси серы с парафином: $CxHy + S = CxHy-2 + H2S↑ (t, ^{\circ})$ Очевидный, казалось бы, метод — нагревание расплавленной серы в токе водорода: H2 + S = H2S $(t, ^{\circ})$ — практически не используется из-за того, что водород не реагирует полностью и в результате получается смесь сероводорода и

водорода. Тем не менее, такой способ тоже засчитывается за верный ответ.

4. Y - Na2S2O3 – это тиосульфат натрия

Реакция 1: $S + Na2SO3 = Na2S2O3 (t, {}^{\circ}\mathbb{C}$

Реакция 2: 2Na2S2O3 + I2 = 2NaI + Na2S4O

Peakция 3: 2Na2S2O3 + AgBr = NaBr + Na3[Ag(S2O3)2]

Реакция 4: Na2S2O3 + 4Cl2 + 5H2O = Na2SO4 + H2SO4 + 8HCl

Критерии оценивания:

Пункт 1:

Верно названы все вещества, записаны все реакции -3 б.

Названы только три вещества, реакции записаны не полностью или допущены ошибки $-2~\mathrm{f}$

Названы не все вещества, нет реакций/ не названы вещества, но записаны реакции – $1\,$ б.

Не названы вещества, нет ни одной реакции -0б.

Всего – 3б.

Пункт 2:

Написано уравнение, верно проведены расчеты – 46

Допущена ошибка в расчетах, но верно записаны реакции и названо вещество D-36

Записаны реакции, нет расчетов – 26

Неверно проведены расчеты, нет реакций – 0б.

Всего – 4б.

Пункт 3:

Верно записано уравнение гидролиза сульфида алюминия, приведен один из указанные в ответе способ получения сероводорода – 3 б

Допущена ошибка в уравнениях, не расставлены коэффициенты – 2 б

Записано одно уравнение – гидролиз или получение сероводорода – 16

Неверно записаны уравнения – 0б

Всего – 3б.

Пункт 4:

Верно записаны 4 реакции, приведена структурная формула тиосульфата натрия (калия) — 5 б

Верно записаны 4 реакции, нет формулы тиосульфата натрия (калия) – 46

Верно записаны 3 реакции – 3 б

Верно записаны 2 реакции – 26

Верно записана 1 реакция – 1 б

Не записаны реакции, нет формулы тиосульфата – 0б

Всего – 5б.

Всего за задачу – 15 б.