Красивый червяк

ограничение по времени на тест
1 секунда
ограничение по памяти на тест
256 мегабайт
ввод
стандартный ввод
вывод
стандартный вывод

Маша любит червяков. Тело червяка состоит из п кольцеобразных сегментов. Каждый сегмент имеет свой радиус. Маша считает червяка красивым, если для любой пары соседних сегментов их радиусы взаимно просты. (Два числа а и b называются взаимнопростыми, если наибольший общий делитель а и b равен 1). Определить является ли данный червяк красивым по мнению Маши.

Входные данные:

Первая строка содержит одно целое число n (0<n<10000) – количество кольцеобразных сегментов червяка.

Вторая строка набора содержит п целых чисел $a_1, a_2, ..., a_n$ ($1 \le a_i \le 2000000$), где a_i — это радиус i-го сегмента.

Выходные данные:

Если червяк красивым, выведите «YES». Иначе выведите «NO».

Пример входные данные 5 1 3 2 1 4 выходные данные YES

Размножение червяков

ограничение по времени на тест
1 секунда
ограничение по памяти на тест
256 мегабайт
ввод
стандартный ввод
вывод
стандартный вывод

Тело червя состоит из п кольцеобразных сегментов. Каждый сегмент имеет свой радиус. Червяк может разделиться на две части вдоль линии разделяющей два соседних сегмента. Каждая часть будет жизнеспособной и превратится в нового червяка если минимален модуль разности радиусов сегментов, по линии между которыми произошло разделение, среди всех модулей разности радиусов сегментов. Определить количество возможных разделений червяка на две жизнеспособные части.

Входные данные:

Первая строка содержит одно целое число n (0<n<100) – количество кольцеобразных сегментов червяка.

Вторая строка набора содержит п целых чисел $a_1, a_2, ..., a_n$ ($1 \le a_i \le 200$), где a_i — это радиус i-го сегмента.

Выходные данные:

Выведите одно число — количество возможных разделений червяка.

Пример

входные данные

5

13214

выходные данные

Множественное размножение червяков

ограничение по времени на тест 2 секунды ограничение по памяти на тест 256 мегабайт ввод стандартный ввод вывод стандартный вывод

Тело червяка состоит из *n* кольцеобразных сегментов. Каждый сегмент имеет свой радиус. Червяк может разделиться на две части вдоль линии разделяющей два соседних сегмента. Каждая часть будет жизнеспособной и превратится в нового червяка если выполняются все следующие условия:

- минимален модуль разности радиусов сегментов, по линии между которых произошло разделение.
- длина каждой части не менее k;
- в части нет двух соседних сегментов, модуль разности радиусов которых, совпадает с минимальным модулем разности радиусов сегментов исходного червяка.

Определить максимальное количество жизнеспособных частей, на которые может разделиться червяк и длину самой длинной жизнеспособной части при разбиении на максимальное количество частей.

Входные данные:

Первая строка содержит два целых числа n и k, где $(1 < n < 2*10^5; 0 < k < n)$ – количество кольцеобразных сегментов червяка, а k – минимальная длина новой жизнеспособной части.

Третья строка набора содержит n целых чисел $a_1, a_2, ..., a_n$ ($1 \le a_i \le 10^9$), где a_i — это радиус i-го сегмента.

Выходные данные:

Выведите два числа — максимальное возможное количество частей разделения червяка и длину самой длинной жизнеспособной части при таком разбиении. Если разделение червяка невозможно, то выведите два нуля.

Пример входные данные 103 131514143246 выходные данные 33

Примечание Данный червяк может быть разделен на жизнеспособные части [1 3 15], [14 1 4], [2 4 6]

Поесть червяков

ограничение по времени на тест 2 секунды ограничение по памяти на тест 256 мегабайт ввод стандартный ввод вывод стандартный вывод стандартный вывод

Кваша любит кушать червяков. Тело червя состоит из n сегментов. Каждый сегмент имеет свой вес. Кваша может скушать в i-й день только один сегмент, вес которого не менее чем i. Для данного червяка, определите максимальное количество дней в течении которых Кваша может его кушать.

Входные данные:

Первая строка содержит одно целое число $n (0 < n \le 2*10^5)$ – количество сегментов червяка.

Вторая строка набора содержит n целых чисел $a_1, a_2, ..., a_n$ ($1 \le a_i \le 10^9$), где a_i — это вес i-го сегмента.

Выходные данные:

Выведите одно число — максимальное количество дней когда Кваша может кушать.

Пример

входные данные

4

3 1 4 1

выходные данные

Максимальный вес

ограничение по времени на тест
40 секунд
ограничение по памяти на тест
512 мегабайт
ввод
стандартный ввод
вывод
стандартный вывод

Тело червя состоит из n сегментов. Каждый сегмент имеет свой вес. Червяк хочет узнать некоторую информацию о своем теле, с этой целью он задает вам вопросы. Каждый вопрос следующего вида:

Он называет вам два числа, l и r ($l \le l \le r \le n$), а вы должны сказать ему, чему равен вес самого тяжелого сегмента среди сегментов с номерами от l до r (номерация от головы к хвосту).

Входные данные:

Первая строка содержит одно целое число $n (0 < n < 10^5)$ – количество сегментов червяка.

Вторая строка набора содержит и целых чисел $a_1, a_2, ..., a_n$ ($1 \le a_i \le 10^9$), где a_i — это вес i-го сегмента.

В третьей строке записано целое число m ($l \le m \le 10^5$) — количество вопросов червяка. Затем следует m строк, в каждой строке записано два целых числа: l и r ($l \le l \le r \le n$), описывающих текущий вопрос.

Вам нужно вывести ответ на вопрос.

Выходные данные

Выведите *т* строк. В каждой строке должно быть записано целое число — ответ на вопрос червяка. Выводите ответы на вопросы в порядке их следования во входных данных.

Примеры входные данные 6 6 4 2 7 2 9 2 3 4 1 6 выходные данные 7

Сходить в гости

ограничение по времени на тест
10 секунд
ограничение по памяти на тест
256 мегабайт
ввод
стандартный ввод
вывод
стандартный вывод

Червяки живут в домиках на опушке леса. В лесу имеются полянки. Каждый домик соединяется с ровно одной полянкой ходом определенного радиуса, и не соединяется с другими домиками . Полянки также соединяются между собой не более чем одним ходом. Причем, нет полянки, двигаясь из которой по разным ходам, можно в нее вернуться. Каждый червяк характеризуется своей толщиной. Червяк может проползти по ходу, если его толщина не превышает радиуса хода.

Червяк толщиной t хочет узнать, сколько других червяков он может посетить двигаясь из своего домика по ходам.

Гарантируется, что червяк толщиной 1 может посетить всех червяков.

Входные данные:

Первая строка содержит одно целое число n и m ($0 \le n \le 2*10^4$; $1 \le m \le 3*10^4$) – количество червяков и количество полянок.

Вторая строка набора содержит п целых чисел $t_1, t_2, ..., t_n$ ($1 \le t_i \le 10^5$), где t_i — это толшина i-го червяка.

Третья строка набора содержит п целых чисел $p_1, p_2, ..., p_n (1 \le p_i \le m)$, где p_i — это номер полянки, с которой связан домик i-го червяка ходом радиуса t_i .

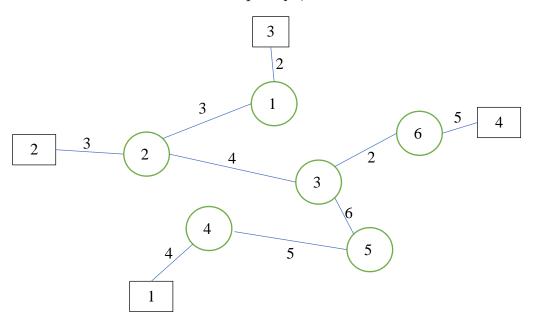
Затем следует m-l строка, в каждой строке записано три целых числа: p_1 , p_2 и $r(1 \le p_1 \le m; 1 \le p_2 \le m; p_1 \ne p_2; 1 \le r \le l0^5)$ где p_1 и p_2 — это номера полянок, между которыми есть ход радиуса r.

Затем записано целое число q ($l \le q \le n$) —количество запросов.

В следующих q строках записано одно число k ($0 < k \le n$) — номер червяка, для которого необходимо определить количество других червяков, которых он может посетить.

Выходные данные

Выведите q строк. В каждой строке должно быть записано целое число — найденное количество. Выводите ответы на вопросы в порядке их следования во входных данных.


Примеры входные данные

46

```
4216
123
362
356
234
455
3
1
2
3
выходные данные
0
1
```

Примечание

Для данного примера указана, следующая схема ходов (квадрат – домик, круг – полянка, число возле хода – его радиус)

