
Задание 1
Счастливое число Кубика

ограничение по времени на тест :1 секунда
ограничение по памяти на тест: 1 мегабайт

ввод: стандартный ввод
вывод: стандартный вывод

По мнению Кубика, число считается счастливым, если оно представимо в виде

произведения ровно трех различных простых чисел (Например, число 255 –

счастливое, так оно делится на 3, 5 и 17). Кубик хочет узнать является ли

имеющееся у него число счастливым. Помогите Кубику решить эту задачу.

Входные данные:

Целое число a (1≤a≤5*1018).

Выходные данные:

Выведите YES, если число счастливое, и NO – иначе.

Пример

входные данные

255
выходные данные

YES

РЕШЕНИЕ на языке Python:

def simple(n):
 if n==1:
 return False
 for i in range (2,int(n**0.5)+1):
 if n%i==0:
 return False
 return True
def f2(n,k):
 n=n//k
 for i in range (k+1, int(n**0.5)+1):
 if n%i==0 and n//i!=i and n//i>k and simple(i) and simple(n//i):
 return True
 return False
def f1(n):
 for i in range (2, int(n**0.5)+1):
 if n%i==0 and simple(i) and f2(n,i):
 return True
 return False
n=int(input())
if f1(n):
 print('YES')
else:
 print('NO')

Задание 2
Отправка

ограничение по времени на тест: 1 секунда
ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод
вывод: стандартный вывод

Кубику необходимо распределить n грузов по контейнерам. Каждый груз

характеризуется весом w, а каждый контейнер — грузоподъемностью q. Кубик

размещает не более чем по три груза в один контейнер там, чтобы их

суммарный вес не превышал q. Помогите Кубику определить минимальное

количество контейнеров, которые необходимо для распределения всех грузов.

Входные данные:

В первой строке два целых числа n, q (1≤n≤5*105, 1≤q≤5*105) — количество

грузов и грузоподъемность контейнеров соответственно.

Во второй строке заданы n целых чисел w1, w2, …, wn — веса грузов

(0<wi ≤ q, i = 1..n).

Выходные данные:

Выведите число – ответ на задачу.

Пример

входные данные

5 8

1 2 3 4 5

выходные данные

2

Примечание

Возможно следующее решение: в первый контейнер необходимо поместить грузы с

весами 1, 2 и 5, во второй — 3 и 4.

РЕШЕНИЕ на языке Python:

Для решения задачи необходимо построить отсортированный массив весов грузов.

n,q=map(int,input().split())
w=[int(x) for x in input().split()]
w.sort()
k=0
while len(w)>0:
 k+=1
 if w[0]+w[-1]>q:
 w=w[:-1]
 else:
 d=0
 for i in range(1,len(w)-1):
 if w[0]+w[i]+w[-1]<=q:
 d=i

 else:
 break
 if d>0:
 w=w[1:d]+w[d+1:-1]
 else:
 w = w[1:-1]
print(k)

Задание 3
Самая высокая пирамидка

ограничение по времени на тест: 2 секунды
ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод
вывод: стандартный вывод

Кубик складывает пирамидку из кругов. При построении пирамидки Кубик

последовательно кладет один круг на другой, радиус которого ровно на два

больше. Все круги лежат на длинном прилавке в ряд. Кубик последовательно

берет круги ряда и строит пирамидку. Если очередной круг не может быть

размещен на текущей пирамидке, то Кубик может начать строить новую

пирамидку или отбросить этот круг. Определите количество кругов в самой

высокой пирамидке, которую сможет построить Кубику.

Входные данные:

В первой строке задано целое число n (1≤n≤1010) — количество кругов на

прилавке.

Во второй строке заданы n целых чисел r1, r2, …, rn — радиусы кругов (0<ri <

105, i = 1..n).

Выходные данные:

Выведите искомое количество, являющееся решением задачи.

Пример

входные данные

11

8 5 6 4 3 2 2 1 8 5 2

выходные данные

4

Примечание

Максимальная пирамидка, которую сможет построить Кубик: (8, 6, 4, 2).

РЕШЕНИЕ на языке Python:

n=int(input())
r=[int(x) for x in input().split()]
k={}
for i in range(len(r)):
 if k.get(r[i]+2)==None:
 if k.get(r[i])==None:
 k[r[i]]=1
 else:
 if k.get(r[i]) == None:
 k[r[i]] = k[r[i]+2]+1
 else:
 k[r[i]] = max(k[r[i]],k[r[i] + 2] + 1)
m=0
for i in k.keys():

 m=max(m,k[i])
print(m)

Задача 4
Поесть блины

ограничение по времени на тест
2 секунды

ограничение по памяти на тест
256 мегабайт

ввод
стандартный ввод

вывод
стандартный вывод

Кубик любит кушать блины. У Кубика есть n блинов. Каждый блин имеет свой

вес. Кубик может скушать в i-й день только один блин, вес которого не менее

чем i. Определите максимальное количество дней, в течении которых Кубик

может кушать блины.

Входные данные:

Первая строка содержит одно целое число n (0<n≤2*105) – количество

блинов.

Вторая строка содержит n целых чисел a1,a2,…,an (1≤ai≤109), где ai — это вес

i-го блина.

Выходные данные:

Выведите одно число — максимальное количество дней когда Кубик может

кушать блины.

Пример

входные данные

4

3 1 4 1

выходные данные

3

РЕШЕНИЕ на языке Python:

n=int(input())
a=[int(x) for x in input().split()]
a.sort()
k=0
for i in range(len(a)):
 if a[i]>k:
 k+=1
print(k)

Задача 5
Красивые пирамидки

ограничение по времени на тест: 1 секунда
ограничение по памяти на тест: 2 мегабайт

ввод: стандартный ввод
вывод: стандартный вывод

Кубичка (подруга Кубика) смотрела как Кубик складывает пирамидки из

кругов (задача №3). Кубичка любит простые числа, поэтому она считает

пирамидку красивой, если в ее составе есть хотя бы два круга, радиус которых

являются простым числом. Определите является ли красивой, по мнению

Кубички, пирамидка, построенная Кубиком.

Входные данные:

В строке заданы целые числа n, r: n (1≤ n, r ≤1010) – количество кругов в

пирамидке, r – радиус верхнего круга пирамидки

Выходные данные:

Выведите YES если пирамидка красивая и NO в противном случае.

Пример

входные данные

3 5

выходные данные

YES

Примечание

Пирамидка состоит из кругов радиуса 9, 7, 5.

РЕШЕНИЕ на языке Python:

def simple(n):
 if n==1:
 return False
 for i in range (2,int(n**0.5)+1):
 if n%i==0:
 return False
 return True
n,r=map(int,input().split())
k=0
for i in range(n):
 if simple(r+i*2):
 k+=1
if k>1:
 print('YES')
else:
 print('NO')

Задача 6

Великое расселение!
ограничение по времени на тест: 5 секунд

ограничение по памяти на тест: 512 мегабайт
ввод: стандартный ввод

вывод: стандартный вывод

Группа кубиков живет на острове, расположенном на в дельте реки.

Некоторые пары островов связаны мостами (одна пара не более чем одним

мостом). Кубики решили расширить свой ареал обитания и расселиться по как

можно больше островам. Остров считается заселенных, если на нем находится

хотя бы четыре кубика. Помогите кубикам определить наибольшее количество

островов, которые они могут заселить.

Входные данные:

Первая строка содержит три целых числа n, m, k (0≤n≤2*104; 1 ≤ m,k ≤3*104) –

количество кубиков, количество островов и количество мостов.

Считается, что кубики изначально обитают на острове с номером 1.

В следующих k строках записаны пара чисел – номера островов, соединенных

мостом.

Выходные данные

Выведите целое число — найденное количество.

Примеры

входные данные

5 7 6

1 3

1 4

1 7

2 3

4 5

5 6

выходные данные

1

Примечание

Для данного примера кубикам могут принадлежать только один остров.

РЕШЕНИЕ

Необходимо найти количество вершин графа, достижимых из первой вершины.

Пример решения на С++

#include <iostream>
#include <vector>
using namespace std;
struct vertex {
 int visited;
 vector<int> neighbors;
};

vector <vertex> graph;

void dfs(int root) {
 graph[root].visited = 1;
 for (int i = 0; i < graph[root].neighbors.size(); ++i) {
 if (graph[graph[root].neighbors[i]].visited == 0) {
 dfs(graph[root].neighbors[i]);
 }
 }
}
int main() {
 int n, m, k;
 cin >> n >> m >> k;
 graph.resize(m);
 for (int i = 0; i < k; i++) {
 int a, b;
 cin >> a >> b;
 graph[a - 1].neighbors.push_back(b - 1);
 graph[b - 1].neighbors.push_back(a - 1);
 }
 for (int i = 0; i < graph.size(); i++)
 graph[i].visited = 0;
 dfs(0);
 int counter = 0;

1

2

3

4

5

6

7

 for (int i = 0; i < graph.size(); i++)
 counter+=graph[i].visited;
 cout << min(counter, n / 4);
 return 0;
}

